Basic Science Department

Math. 2 Code: Math 102 Final Exam: 26 - 5 - 2013**Time Allowed: 2 hours**

Academic year: 2012 / 2013

Semester: Spring

Examiner: Dr. Mona Samir Dr. Mohamed Eid

Total Mark: 40

4

3

3

4

3

3

2

4

3

3

Answer All questions

Question 1

(a) If α , β and γ are the roots of the equation: $x^3 - 6x - 3x^2 + 8 = 0$,

Find: (i) $\sum_{i=1}^{3} C_i^2$

(ii) $\sum_{i=1}^{3} C_i^3$ (iii) The roots if they form an A.S.

(b) Using mathematical induction, prove that:

 $\frac{1}{2x3} + \frac{1}{3x4} + \frac{1}{4x5} + \dots + \frac{1}{(n+1)(n+2)} = \frac{n}{2(n+2)}$

(c) Find the sum to **n** terms of the series: $\frac{1}{1\times2} + \frac{1}{2\times3} + \frac{1}{3\times4} + \cdots + \frac{1}{n(n+1)}$

Question 2

(a) Find the eigenvalues and the eigenvectors of the matrix: A = 0

(b) Solve the equation $x^3 - 8x^2 + 21x - 20$, if 2 - i is one of the root.

(c) Solve the following linear system by inverse method:

y + 2z + 2x - 8 = 0, x + z - y = 1, x + 2z + y = 7.

Question 3

(a)State the definition of parabola.

(b) Determine the center and radius of the circle $x^2 + y^2 + 4x - 6y + 3 = 0$. Also, write its tangent at the point (1, 2).

(c) Find center, vertices and sketch the hyperbola $4x^2 - y^2 + 24x + 4y + 36 = 0$. 4

Question 4

(a) Find center, vertices and sketch the ellipse $x^2 + 4y^2 + 4x + 8y + 4 = 0$.

(b) Write the equation of plane that passes through (1, 2, 3), (2, 0, 1), (4, 1, -1).

(c) Find the angle between the line $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{-1}$ and the plane x-2y+z+1=0

Also, find the point of intersection.

Basic Science Department Mathematics 2 Code: Math 102 Mid-Term Exam: 7 / 4 / 2013 Time Allowed: 70 Minuets **Faculty of Engineering Answer All questions** Algebra

Academic year: 2012 / 2013 **Semester: Spring Examiners: Dr. Mona Samir** Dr. Mohamed Eid

Total Mark: 30

The answer of **Algebra** and the answer of **Geometry** in two separated papers

(1) Using mathematical induction to prove the validity of the following:

$$\frac{1}{1\times2} + \frac{1}{2\times3} + \dots + \frac{1}{n\times(n+1)} = \frac{n}{n+1}$$

- (2) Use Horner's method to divide $(2x^3 x^2 + 4x 1)$ by (x + 1).
- (3) Find the sum of n terms of the series: $\sum_{r=1}^{n} r(r-3)(r+4)$ 4
- (4) Using the binomial theorem, expand $(7 3x^4)^{-4}$.

3

2

3

4

4

4

4

A. Geometry

- (1)State the definition of parabola.
- (2) Find the radical axis of the circles:

$$x^{2} + y^{2} + 3x - 4y = 0$$
 and $x^{2} + y^{2} + x - y - 2 = 0$.

(3) Write the equation of circle with center (1, -2) and radius 2.

Also, find its tangent line at the point (1, 0).

- (4) Find the vertex, focus and sketch the parabola $x^2 4x + 8y 12 = 0$.
- (5) Find the center, vertices and sketch the ellipse $4x^2 + y^2 8x 12 = 0$.

Good luck

Dr. Mona Mehanna

Dr. Mohamed Eid

Group	ID	Name

[1]Complete the statement: The circle is the locus of moving point such that....

[2]Separate the lines $x^2 - 3xy + 2y^2 + 2x - 4y = 0$

[3]Write the equation of circle where the points (2, -1), (0, 3) are ends of diameter. Also, find its center and write the tangent of this circle at the point (2, 3).

Group	ID	Name

[1]State the definition of radical axis of two circles.

- [2]Separate the lines $x^2 + 4xy + 4y^2 + 3x + 6y + 2 = 0$.
- [3] Find vertex, focus and sketch the parabola $y^2 + 8x = 0$ and write its tangent at the point (-2, 4)

Group	ID	Name

[1]Complete the statement: The line is the locus of moving point such that....

[2]Separate the lines $x^2 + 2xy - 3y^2 + 4x + 4y + 4 = 0$

[3]Write the equation of circle where the points (2, -1), (-2, 3) are ends of diameter. Also, find its center and radius.

Group	ID	Name

[1]Complete the statement: The parabola is the locus of moving point such that....

[2]Separate the lines $2x^2 + xy - y^2 + 5x - y + 2 = 0$

[3] Determine the center and radius of circle: $x^2 + y^2 + 2x - 4y - 4 = 0$

Find the radical axis of the circles: $x^2 + y^2 + x + 2y = 0$, $x^2 + y^2 + 2x - 4y - 4 = 0$

Group	ID	Name

[1]State the definition of circle.

- [2]Separate the lines $2x^2 + 3xy + y^2 = 0$ and find the angle between them and the point of intersection.
- [3] Find the vertex, focus and sketch the parabola $x^2 4x + 8y 20 = 0$

Group	ID	Name

[1]State the definition of parabola.

- [2]Separate the lines $2x^2 + xy y^2 = 0$ and find the angle between them and the point of intersection.
- [3] Find the vertex, focus and sketch the parabola $y^2 12x 4y + 16 = 0$

1-Name:	Group:	ID
1 Nume.	Group.	

[1]Determine center, vertices and sketch the hyperbola $x^2 - 4y^2 + 4x - 16y - 16 = 0$

[2]Write the line that passes through the points (2, 1, 4), (3, 0, 1) in symmetric form and parametric form.

[3] Find the angle between the lines: $\frac{x-4}{2} = \frac{y-2}{-2} = \frac{z-1}{1}$, $\frac{x}{2} = \frac{y-2}{2} = \frac{z-1}{-1}$

2-Name:	Group:	ID
2-Name:	Group:	ID

[1]Determine center, vertices and sketch the hyperbola $4x^2 - y^2 + 24x + 4y + 36 = 0$ [2]Write the equation of plane that passes through the points: (1, 1, 0), (1, 0, 3), (4, 3, 1) [3]Find the angle between the lines $\frac{x-4}{2} = \frac{y+1}{2} = \frac{z-3}{1}$, x = 2, y = 3t, z = 4t-1, t in R

3-Name: Group: ID

[1]Determine center, vertices and sketch the hyperbola $x^2 - 4y^2 - 6x - 24y - 31 = 0$ [2]Find the point of intersection of the line $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{-1}$ with the plane

$$x - 2y + z + 1 = 0$$

[3] Find the angle between the line $\frac{x-3}{2} = \frac{y}{1} = \frac{z+3}{2}$ and the plane x - 2y + 2z - 10 = 0

4-Name: Group: ID

[1]Determine center, vertices and sketch the hyperbola $x^2 - 4y^2 + 4x + 24y - 36 = 0$ [2]Show that the line $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+2}{-1}$ lies in the plane 3x - y + z - 3 = 0

[3] Find the angle between the planes: 3x + 4z + 5 = 0, x - 2y + 2z = 0

5-Name:	Group:	ID
5-Name:	Group:	

[1]Determine center, vertices and sketch the hyperbola $4x^2 - y^2 + 16x - 4y + 16 = 0$

[2] Write the equation of plane that passes through the points: (2, 1, 0), (1, 2, 3), (3, 0, 4)

[3] Find the angle between the planes: x + y - z + 1 = 0, 2x + 2y - 2z + 5 = 0

6-Name:	Group:	ID
---------	--------	----

- [1]Determine center, vertices and sketch the hyperbola $3x^2 y^2 + 18x 4y + 24 = 0$
- [2]Write the line that passes through the points (0, 1, 3), (3, 2, -2) in symmetric form and parametric form.

[3] Find the angle between the lines
$$x = t + 2$$
, $y = 3t$, $z = 2t - 1$, $x = 2t - \frac{1}{2}$, $y = t + 2$, $z = \frac{1}{2}t - \frac{3}{4}$, t in R
